Sharp inequalities of Iyengar-Madhava Rao-Nanjundiah type including cos(x/√3 + ax^r)

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some New Iyengar Type Inequalities

Some new Iyengar type inequalities for an integral are obtained by using the generalised Taylor formula with integral remainder.

متن کامل

A short remark on the result of Jozsef Sandor

It is pointed out that, one of the results in the recently published article, ’On the Iyengar-Madhava Rao-Nanjundiah inequality and it’s hyperbolic version’ [3] by J´ozsef S´andor is logically incorrect and new corrected result with it’s proof is presented.

متن کامل

Some Sharp Ostrowski-grüss Type Inequalities

Using a variant of Grüss inequality, to give a new proof of a well known result on Ostrowski-Grüss type inequalities and sharpness of this inequality is obtained. Moreover, a new general sharp Ostrowski-Grüss type inequality is given.

متن کامل

Sharp Weak - Type ( 1 , 1 ) Martingale Inequalities

Let X be a Hilbert-space valued martingale and Y a real-valued supermartingale which are orthogonal and with Y diierentially subordinate to X. Then where the constant (2) is Catalan's constant whose approximate value is 0:915965594. The constant K is B. Davis' constant in the Kolmogorov's weak-type inequality for conjugate harmonic functions in the unit disk. The inequality is sharp.

متن کامل

Cramer-Rao Type Integral Inequalities for General Loss Functions

Cramer-Rao type integral inequalities where developed for loss functions w(x) which are bounded below by functions of the type g(x) = c|x|l, l > 1. As applications, we obtain lower bounds of Hajek-LeCam type for locally asymptotic minimax error for such loss functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Inequalities

سال: 2023

ISSN: ['1846-579X', '1848-9575']

DOI: https://doi.org/10.7153/jmi-2023-17-44